This classification is specifically concerned with changes to examples that leave them sortable, as there are almost always ways of adding details to a BP's examples that make them unsortable.
Right-sorted BPs in this Bongard Problem are often Bongard Problems where there is always a way of adding to left-sorted examples to make them right-sorted, but not the other way around, or vice versa.
Another version of this Bongard Problem could be made about adding white (erasure of detail) instead of black (addition of detail).
Another version could be made about adding either white or black, but not both.
Where appropriate, you can assume all images will have some room in a lip of white background around the border (ignoring https://en.wikipedia.org/wiki/Sorites_paradox ).
You can't expand the boundary of an image as you add detail to it. If image boundaries could be expanded, then any shape could be shrunken to a point in relation to the surrounding whiteness, which could then be filled in to make any other shape.
How should this treat cases in which just a few examples can't be added to at all (like an all-black box)? E.g. BP966. Should this be sorted right (should the one special case of a black box spoil it) or should it be sorted left (should examples that can't at all be further added be discounted)? Maybe we should only sort BPs in which all examples can be further added to. (See BP1143left.) - Aaron David Fairbanks, Nov 12 2021
Is "addition of detail" context-dependent, or does it just mean any addition of blackness to the image? Say you have a points-and-lines Bongard Problem like BP1100, and you're trying to decide whether to sort it left or right here. You would just want to think about adding more points and lines to the picture. You don't want to get bogged down in thinking about whether black could be added to the image in a weird way so that a point gets turned into a line, or something. - Aaron David Fairbanks, Nov 13 2021 |